Extensions 1→N→G→Q→1 with N=C32 and Q=Dic3

Direct product G=N×Q with N=C32 and Q=Dic3
dρLabelID
C32×Dic336C3^2xDic3108,32

Semidirect products G=N:Q with N=C32 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C321Dic3 = C32⋊C12φ: Dic3/C2S3 ⊆ Aut C32366-C3^2:1Dic3108,8
C322Dic3 = He33C4φ: Dic3/C2S3 ⊆ Aut C32363C3^2:2Dic3108,11
C323Dic3 = C33⋊C4φ: Dic3/C3C4 ⊆ Aut C32124C3^2:3Dic3108,37
C324Dic3 = C3×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3236C3^2:4Dic3108,33
C325Dic3 = C335C4φ: Dic3/C6C2 ⊆ Aut C32108C3^2:5Dic3108,34

Non-split extensions G=N.Q with N=C32 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C32.Dic3 = C9⋊C12φ: Dic3/C2S3 ⊆ Aut C32366-C3^2.Dic3108,9
C32.2Dic3 = C3×Dic9φ: Dic3/C6C2 ⊆ Aut C32362C3^2.2Dic3108,6
C32.3Dic3 = C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C32108C3^2.3Dic3108,10

׿
×
𝔽