Extensions 1→N→G→Q→1 with N=C32 and Q=Dic3

Direct product G=NxQ with N=C32 and Q=Dic3
dρLabelID
C32xDic336C3^2xDic3108,32

Semidirect products G=N:Q with N=C32 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C32:1Dic3 = C32:C12φ: Dic3/C2S3 ⊆ Aut C32366-C3^2:1Dic3108,8
C32:2Dic3 = He3:3C4φ: Dic3/C2S3 ⊆ Aut C32363C3^2:2Dic3108,11
C32:3Dic3 = C33:C4φ: Dic3/C3C4 ⊆ Aut C32124C3^2:3Dic3108,37
C32:4Dic3 = C3xC3:Dic3φ: Dic3/C6C2 ⊆ Aut C3236C3^2:4Dic3108,33
C32:5Dic3 = C33:5C4φ: Dic3/C6C2 ⊆ Aut C32108C3^2:5Dic3108,34

Non-split extensions G=N.Q with N=C32 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C32.Dic3 = C9:C12φ: Dic3/C2S3 ⊆ Aut C32366-C3^2.Dic3108,9
C32.2Dic3 = C3xDic9φ: Dic3/C6C2 ⊆ Aut C32362C3^2.2Dic3108,6
C32.3Dic3 = C9:Dic3φ: Dic3/C6C2 ⊆ Aut C32108C3^2.3Dic3108,10

׿
x
:
Z
F
o
wr
Q
<